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How Practical is Network Coding?
Mea Wang, Baochun Li

Abstract— With network coding, intermediate nodes between
the source and the receivers of an end-to-end communication
session are not only capable of relaying and replicating data
messages, but also of coding incoming messages to produce coded
outgoing ones. Recent studies have shown that network coding is
beneficial for peer-to-peer content distribution, since it eliminates
the need for content reconciliation, and is highly resilient to peer
failures. In this paper, we present our recent experiences with a
highly optimized and high-performance C++ implementation of
randomized network coding at the application layer. We present
our observations based on an extensive series of experiments,
draw conclusions from a wide range of scenarios, and are more
cautious and less optimistic as compared to previous studies.

I. INTRODUCTION

Network coding has been originally proposed in information

theory in 2000 [1], and has since received extensive research

attention. The essence of network coding is a paradigm shift

to allow coding at intermediate nodes between the source and

the receivers in one or multiple communication sessions. The

fundamental insight of network coding is that information to

be transmitted from the source in a session can be inferred,

or decoded, by the intended receivers, and does not have

to be transmitted verbatim. It is a well known result that

network coding may achieve better network throughput in

certain network topologies [2].

To practically implement the paradigm of network coding,

Ho et al. [3] has been the first to propose the concept of

randomized network coding, in which an intermediate node

transmits on each outgoing link a linear combination of

incoming messages, specified by independently and randomly

chosen code coefficients over some finite field. In Wu et al. [4],

it has been shown that randomized network coding can achieve

“close to the theoretically optimal performance.” Avalanche
[5] has further proposed that randomized network coding can

be used for bulk content distribution, in competition with

BitTorrent, one of the most successful P2P content distribution

protocols. It claims that “the performance benefits provided by

network coding in terms of throughput can be more than 2-3

times better compared to transmitting unencoded blocks.”

Nevertheless, the claims have not been viewed to be suf-

ficiently conclusive, as they are based on simulation studies

(in both [4] and [5]), rather than real-world implementations.

Reasonable doubts have been raised with respect to the feasi-

bility of implementing network coding, especially with respect

to the additional computational overhead of coding operations.

Recent work from Avalanche has sought to demonstrate the

feasibility of network coding with a real-world implementation

in C# [6]. With its experiments in a long-lived distribution

session lasting around 38 hours to distribute a 4.3GB file, it

has been observed that “network coding incurs little overhead,

both in terms of CPU and I/O, and it results in smooth and fast
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downloads.” In particular, with respect to the computational

overhead of network coding, the conclusion was drawn from

the observation that each of the clients only consumes about

20% – 40% of its CPU throughout the session. This work,

however, did not make any comparisons between using and

not using network coding for content distribution.

Despite recent efforts of studying the practicality of apply-

ing network coding in peer-to-peer networks, there are still

no clear and well-justified answers to the following question:

Given a content distribution session in peer-to-peer networks,

is network coding indeed able to offer a better throughput

— best measured in the time to complete downloading at

the peers, as compared to using a protocol without coding

(such as BitTorrent)? In other words, how practical is network
coding, as compared to content distribution without coding?
In this paper, we seek to systematically study the advantages

and drawbacks of implementing network coding in practice,

and to offer an impartial view of the computational and

communication overhead introduced by network coding. To

achieve this objective, we resort to a controlled environment

of a cluster of high-performance servers, and evaluate the

practical implications of randomized network coding in a

highly optimized and high-performance C++ implementation

at the application layer. We have implemented a bandwidth-
emulated environment, in which bandwidth limits of typical

DSL and high-bandwidth institutional peers are emulated. We

unfold our journey through an extensive series of experiments.

Though some of our experiences echo some of the previous

observations on CPU overhead [6], our conclusions are, never-

theless, more cautious and less optimistic that previous studies.

II. HOW PRACTICAL IS NETWORK CODING?

The focus of our study is on the practicality, performance

and overhead of randomized network coding, as compared to

not using coding to distribute data. To achieve our objectives,

over a 12-month period, we have implemented a bandwidth-

controlled and repeatable experimental testbed in a dedicated

50-node cluster of high-performance dual-CPU servers, inter-

connected by Gigabit Ethernet.

Preparing
outgoing
matrix

Matrix
inversion

Decoding

Encoding

incoming blocks from
multiple upstream nodes

outgoing coded blocks to 
downstream nodes

accumulated blocks so far (decoding begins 
umber of blocks received)

bandwidth limits enforced throughout all active connections

Fig. 1. The architecture of a bandwidth-emulated peer.
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On each participating peer in a peer-to-peer session, the

architectural design of our implementation is best illustrated

in Fig. 1. The core of the architecture is our highly optimized

implementation of the encoding and decoding routines of

randomized network coding. To feed the encoding routines,

we allow multiple TCP connections from multiple upstream

peers. To transmit the result of the encoding process, multiple

TCP connections to their corresponding downstream peers are

established. In the lifetime of each neighboring peer, we use a

persistent TCP connection to minimize overhead. To guarantee

the most optimized binary with the best performance, the

system is implemented in C++ (with about 10,000 lines of

code), and is compiled with full optimization (-O3).

We briefly summarize the concept of randomized network

coding [3], [4], [5], [7]. The original content on the source is

segmented into n blocks [b1, b2, . . . , bn], each bi has a fixed

number of bytes k (referred to as the block size). At the

time of encoding for downstream peer p, a peer (including the

source) independently and randomly chooses a set of coding

coefficients [cp
1, c

p
2, · · · , cp

m](m ≤ n) in the Galois field GF(28)
for the downstream peer p. It then randomly chooses m blocks

— [bp
1, b

p
2, . . . , b

p
m] — out of all the blocks it has received so

far (all the original blocks if it is a source of the session),

and produces one coded block x of k bytes by computing

x =
∑m

i=1 cp
i · bp

i , where the ratio m/n is referred to as

density in this paper. The n coding coefficients can easily

be computed by multiplying [cp
1, · · · , cp

m] with the m × n
matrix of coding coefficients embedded in the incoming blocks

[bp
1, b

p
2, . . . , b

p
m]. As the session proceeds, a peer accumulates

coded blocks received from its upstream peers into its local

buffer, and encodes new coded blocks to serve its downstream

peers. To maximize linear independence among coded blocks

transmitted in the network, a peer independently and randomly

chooses a new set of coding coefficients for each of its

downstream peer.

As soon as a peer has received a total of n linearly indepen-

dent coded blocks x = [x1, x2, . . . , xn], it starts the decoding

process. To decode, it first forms a n × n matrix A, using

the n coding coefficients embedded in each of the n coded

blocks it has received. Each row in A corresponds to n coded

coefficients of one coded block. It then recovers the original

blocks b = [b1, b2, . . . , bn] by computing b = A−1xT . In such

a decoding process, it first computes the inverse of A using

Gaussian elimination, and then multiplies A−1 with x, which

takes n2 · k multiplications of two bytes in GF(256).

A. Coding Performance

The first question that one would naturally ask is: “What is

the performance of randomized network coding?” To answer

this question, we establish a single connection between one

source and one receiver, each hosted by a dedicated dual-CPU

server (Pentium IV Xeon 3.6GHz). We show the bandwidth

of the encoding and decoding functions in Fig. 2, in bytes per

second. The figure shows the results of a series of experiments,

with different configurations with respect to the number of

blocks and the block size.

In the figure, the x axis shows the number of blocks used,

and bars with different grayscale represent different block
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Fig. 2. Performance of randomized network coding: encoding (left) and
decoding (right) bandwidth in bytes per second.

sizes. We vary the block size from 64 bytes to 1 MB, and vary

the number of blocks from 10 to 1500. There are a number

of important observations we can derive from these results.

First, the absolute values of both encoding and decoding

bandwidth are impressive, especially when the number of

blocks is smaller than 100. As we have shown, when there

are only 10 blocks, the coding bandwidth exceeds 10 MB per

second! Even with 1500 blocks, we can still observe a coding

bandwidth of more than 20 KB per second, which is about the

same bit rate as a typical multimedia stream.

Second, the coding bandwidth rapidly decreases as the

number of blocks increase, but it does not vary significantly

as the block size varies. This observation justifies the use of

a small number of blocks (such as 100). Indeed, the peer-to-

peer experiments in Avalanche divide 4.3 GB files into groups
(also referred to as generations [4]), and uses 80 blocks per

group. Each block in Avalanche has approximately 2.3 MB.

From our results, we can reflect that with 80 blocks and 2.3

MB per block, the coding bandwidth is between 1 and 2 MB

per second. Since most peers are on a slower connection, the

coding thread does not have the data readily available to code

at its full bandwidth. This explains why CPU load is around

20% in Avalanche experiments.

Third, as the block size varies, there is a “sweet spot” when

the coding bandwidth is maximized. This optimal block size

shifts upwards as the number of blocks increases, but it is

around 2 KB – 32 KB. This justifies the use of small block

sizes less than 32 KB. Indeed, even BitTorrent uses 16 KB as
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its block size.

Finally, in each configuration, the encoding and its corre-

sponding decoding bandwidth are practically the same. At first

glance, this seems to be hardly surprising, as both of them

have been previously shown to be a multiplication of a matrix

and a vector, in GF(256). As we further study the decoding

algorithm, however, we note that it involves matrix inversion

using Gaussian elimination, which has a complexity of O(n3).
Shouldn’t decoding be much less efficient than encoding?

0

17.5

35.0

52.5

70.0

12
8B

,10
0

12
8B

,25
0

12
8B

,50
0

25
6B

,10
0

25
6B

,25
0

25
6B

,50
0

51
2B

,10
0

51
2B

,25
0

51
2B

,50
0

1K
,10

0

1K
,25

0

1K
,50

0

2K
,10

0

2K
,25

0

2K
,50

0

4K
,10

0

4K
,25

0

4K
,50

0

32
K,10

0

32
K,25

0

32
K,50

0

25
6K

,10
0

51
2K

,10
0

Generating encoding matrix Encoding Matrix inversion
Decoding

μsecs
/byte

(a) computation time per byte in various configurations

0

50

100

150

200

25 blocks 50 blocks 100 blocks 200 blocks 400 blocks

Encoding Matrix inversion
Decoding Transmitting

seconds

seconds

seconds

seconds

(b) downloading time of a 13.8 MB file
average transmitting time: one second;  matrix inversion: half a second.
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To obtain further insights, we show the time to generate

encoding matrices, encode, inverse a matrix and decode. We

show these times, normalized to microseconds per byte, in

Fig. 3(a). Again, we observe that the coding performance

degrades significantly as the number of blocks increase from

100 to 500, regardless of the block size. We can also observe

that the time taken to perform matrix inversion is negligible as

we increase the block size k to anything beyond 2 KB. Larger

blocks are actually more reasonable, as the header overhead

to carry n coding coefficients in a coded block would be too

significant if the block size is smaller than 2 KB.

What if we wish to transmit a fixed-size file from the source

to the receiver? In Fig. 3(b), we show the time it takes to

transmitting a 13.8 MB file using network coding in an one-to-

one session, over Gigabit Ethernet without bandwidth limits.

It appears that it takes, on average, only a second to transmit

the coded blocks and half a second to inverse the matrix A,

both of which are negligible as compared to the encoding

and decoding time. We have previously noted that it takes

n2 · k multiplications in GF(256) to multiply A−1 and x. If

the number of bytes in the data to be distributed, i.e., n · k,

remains fixed, then the number of multiplications on GF(256)

that a peer needs to perform (after computing A−1) scales

linearly with n. This precisely matches the results shown in

Fig. 3(b).

B. Density and Aggressiveness in More Realistic Topologies

Now that we have an idea about coding performance, we

wish to deploy randomized network coding in more realistic

network topologies, and compare its performance to naive
broadcast, a scheme we choose as the worst possible protocol

one can use to distribute content over peer-to-peer networks.

In naive broadcast, upon receiving a block, each peer simply

forwards it to all its downstream neighbors. All incoming

duplicated blocks will simply be discarded. Our experiences

have shown that it usually leads to 300% additional bandwidth

consumption as compared to using a better pull or push-based

protocol to reconcile content. We use naive broadcast as the

baseline benchmark that we use to evaluate the practicality of

network coding, with the mentality that if it is challenging for

network coding to compete with naive broadcast, it will have

greater difficulties competing with a well-tuned protocol such

as BitTorrent.

To experiment with more realistic topologies in our 50-

node dual-CPU server cluster, we wish to construct bandwidth-

emulated peer-to-peer topologies with around 50 – 100 peers,

each with a dedicated CPU in the server cluster. We implement

the strategy of staged construction of such topologies, in

that peers are added in batches, as each new peer joins, it

randomly selects a certain number of upstream neighbors from

the existing peers in the network. The topologies are designed

to contain 30% Ethernet peers and 70% DSL peers. The uplink

and downlink bandwidth limits of an Ethernet peer are set at

1 MB/sec, and a DSL peer has an uplink bandwidth limit of

50 – 80 KB/sec, and a downlink bandwidth limit of 100 – 200

KB/sec. These topologies are designed to emulate real-world

peer-to-peer networks, and are referred to as mixed topologies

hereafter. Further, when we evaluate performance, we are

mostly concerned with the average downloading time of a

peer-to-peer content distribution session, which is measured as

the time period from the starting point of the session (before

encoding starts at the source) to the point that a peer finished

decoding (or recovering) all the original blocks.

To optimize the performance of a peer-to-peer session using

network coding, one needs to tune its operational parameters

so that they are optimal for this purpose. One such parameter

is density m/n, in which m is the number of blocks a

peer randomly selects to encode a new coded block for its

downstream peers, and n is the number of original blocks

in the session. In Fig. 4(a), we vary density from 100% to

2%, and measure the average downloading time in a mixed

topology of 80 peers. We used 100 blocks and 32 KB per

block, as they have been shown to offer superb performance

in our previous experiments.
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Fig. 4. Average downloading times when density varies from 100% to
2%, as compared to naive broadcast. (a) without linear dependence checks,
also shown is the percentage of nodes that have successfully decoded after
receiving 100 coded blocks; (b) with linear dependence checks, also shown is
the number of blocks required for successful decoding, as a percentage of the
number of original blocks The network has 80 peers, each with 10 upstream
neighbors, 30%/70% mixed topology, aggressiveness is 100%, 100 blocks, 32
KB per block.

From Fig. 4(a), we observe that as density decreases, the

average downloading time steadily decreases. Indeed, this

observation matches our intuition, as when density decreases,

each peer has fewer blocks to encode, thus leading to a

higher coding bandwidth, and smaller computational overhead

of encoding. That said, when we tune density to lower than

6%, we can see that a substantial number of peers is not

able to successfully decode after receiving the first 100 coded

blocks, due to linear dependence among these blocks. This

is not surprising, as the corresponding coding matrix would

be too sparse to be full rank if the density is too low. It

is indeed surprising, however, when we compare network

coding with naive broadcast. We can see that naive broadcast,

being the worst possible non-coding protocol, actually enjoys

a better average downloading time than coding at any density

using network coding! We wish to postpone our discussion of

Fig. 4(b).

We now try to find remedies to improve the performance

of network coding. When we review our implementation of

network coding, it appears that each peer only starts to produce

and serve coded blocks to its downstream peers when it

has buffered n coded blocks itself. This is not efficient at

all since it can easily start to produce coded blocks much

earlier. We then implement a tunable parameter referred to as
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Fig. 5. Average downloading times when aggressiveness varies from 100% to
20%, as compared to naive broadcast. (a) without linear dependence checks,
also shown is the percentage of nodes that have successfully decoded after
receiving 100 coded blocks; (b) with linear dependence checks, also shown is
the number of blocks required for successful decoding, as a percentage of the
number of original blocks. The network has 80 peers, each with 10 upstream
neighbors, 30%/70% mixed topology, density is 6%, 100 blocks, 32 KB per
block.

aggressiveness (for lack of a better word), which represents the

number of blocks it needs to buffer before starting to produce

and serve new coded blocks, normalized by the number of

original blocks (as a percentage). We tune aggressiveness from

100% — which is what we use in the density experiment

— down to 20%, in the hope that it can lead to shorter

downloading times, as each peer is now more eager to start

serving.

We start our experiment with the same configuration as the

previous experiment, but with density set at 6%, the best we

have observed in Fig. 4. Our results, shown in Fig. 5(a), indeed

show a trend of slowly decreasing downloading times, which

may not be as promising as we have expected. To make matters

worse, as we start to monitor the number of peers who fail

to decode after receiving 100 blocks, we are surprised to see

that, even with aggressiveness set to as high as 96%, there still

exist a few peers who cannot decode, which implies that they

have received linearly dependent blocks. All previous work

(e.g., [7]), however, theoretically maintained that the blocks

should be linearly independent with high probability.

Going to one extreme, we have run a simple test with 10

peers and aggressiveness set to 1%, i.e., a peer sends a new

coded block to its downstream peer whenever it receives a new

coded block from its upstream peers. Fig. 6 shows a simplified
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Fig. 6. Linearly dependent blocks may be received by a peer if aggressiveness
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new coded block to its downstream peer whenever it receives a new coded
block from its upstream peers.

version of what we have observed from experiment traces. As

the source, peer 1 sends two linearly independent blocks, a and

b, to peer 2 and 3, respectively. Peer 2 immediately sends a
to its own downstream peers 4 and 5, scaled with two random

code coefficients, say 5a and 3a. Peer 3 also forwards 2b to

peer 4 around the same time. If peer 4 receives 5a first, it will

immediately send k ·5a to peer 5, which is linearly dependent

with 3a that peer 5 has already received from peer 2. If peer

4 receives 2b first, it will first send k1 · 2b to peer 5, and then

another coded block k2 · 5a + k3 · 2b upon receiving 5a from

peer 2, where k1, k2 and k3 are randomly chosen coefficients.

Naturally, the three coded blocks that peer 5 has just received

are not linearly independent from one another.

The above example confirms the informal intuition that,

when peers are too “eager” to serve other peers with new

coded blocks, there are not enough linearly independent blocks

to go around the system. Our solution to this challenge is

to perform linear dependence checks at each peer: when

a coded block is received at a peer, we attempt to run it

through a dependence check routine. It is discarded if it is

linearly dependent with any of the previously received blocks.

Our experiences have shown that (details omitted due to

space constraints) the computational overhead of such linear

dependence checks increases as the number of buffered blocks

increases, which implies that such linear dependence checks

is only practical if we have a small number of blocks buffered

in each peer. In a session with fewer than 300 blocks, we

have observed that, when comparing the downloading time

of a 13.8 MB file in an one-to-one session, the downloading

time is practically the same with or without linear dependence

checks. This observation is further confirmed when we re-

run our density tuning experiment with linear dependence

checks activated. Shown in Fig. 4(b), the average downloading

times are unchanged when compared to Fig. 4(a), without the

checks. This confirms, in a more realistic topology, that the

overhead of linear dependence checks is quite negligible if the

number of blocks is small.

Since we only have 100 blocks in the aggressiveness tuning

experiment, we run the experiment again, this time with linear

dependence checks. Shown in Fig. 5(b), the average download-

ing times slowly decrease as aggressiveness becomes lower.

However, we note that as aggressiveness reaches a certain

critical point (around 66%), the number of blocks required

to decode takes a sharp turn upwards, which leads to longer,

rather than shorter, downloading times. This corresponds to

the same point in Fig. 5(a) without checks, as the number

of peers that fail to decode increases dramatically around

63 – 66%. Even with 66% aggressiveness, it can only offer

a 25% advantage as compared to when aggressiveness is

100%. Nonetheless, the brighter side of the story is that, with

aggressiveness at 66% and density at 6%, the performance

of network coding with linear dependence checks approaches
that of naive broadcast (but still inferior).

III. CONCLUDING REMARKS

This paper is written, for all practical purposes, to present

our experiences with network coding in a comprehensive and

unbiased manner. We are content with the raw one-to-one

bandwidth of coding when the number of blocks is small and

when the block size is appropriate, but have noted the presence

of linearly dependent blocks when we seek to tune density and

aggressiveness to speed it up in more realistic topologies. We

have discovered that a coded peer-to-peer session offers poorer

performance in terms of downloading times, as compared to

the worst possible non-coding protocol, naive broadcast.
We believe that network coding offers inferior performance

to naive broadcast due to two of its key characteristics. First,
though encoding takes little computational overhead if we

use a low density (such as 6%), decoding still requires full

matrix multiplication. Second, due to its requirement to buffer

a certain number of coded blocks before it can serve new

coded blocks, the latencies of such block accumulation are

not negligible. Since it is not possible to use a very small

aggressiveness value due to linear dependence constraints,

such buffering latencies cannot be completely eliminated. We

should keep in mind that naive broadcast would never be

used in realistic peer-to-peer applications; in reality, BitTorrent

has little bandwidth overhead, due to its elaborate protocols

performing content reconciliation. If network coding cannot

even match naive broadcast, it is hard to imagine it offering

the same performance as BitTorrent, which is approximately

300% more efficient based on our observations! As such, our

conclusion with respect to the benefits of network coding is

more cautious and less optimistic than previous studies.
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